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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
- TECHNICAI MEMORANDUM 1319°

TORSION AND BENDING OF FRISMATIC RODS OF
HOLLOW RECTANGULAR SECTION*
By B. L. Abramyan

In the present paper a solution is given for the problem of the
torsion and bending of prismatic rods of hollow rectangular sections.

As in the former paper (reference 1), the method given by
N. Kh. Arutyunyan (reference 2) of introducing auxiliary functions was
employed in the solution of this problem. This method permitted reduc-
ing the solution of the partial differential equations of the problem
to the solution of linear differential equations of the second order
with constant coefficients and reducing the determination of the con-
stants of integration to the solution of an infinite completely regulaxr
system of linear equations. :

The obtained formulas determine the stiffness in torsion and bend-~
ing as a function of the geometric parameters of the section.

At the same time, there are indicated the limits of applicability
of the semiempirical formula of Bredt (reference 3) for the determina-
tion of the stiffness in torsion of hollow thin-walled rods.

1. TORSION OF A PRISMATIC ROD OF HOLLOW RECTANGULAR SECTION

1. Statement of the problem. - The determination of the stress
funetion U(x,y) for the torsion of a rod of a doubly connected cross
section reduces, as 1s known, to the integration of Poisson's equation

aZU d2u
2 _ , )
Vey = a2 + 372 2 (r.1)

when  the function U(x,y) becomes zero at the outer contour and assumes
a constant value Uy on the inner contour (fig. 1). From the symmetry

it is sufficient to find the function U(x,y) only for the part of the
section ODEFBC. In order that the solution extend to the entire region
of the cross section, it is necessary that on the lines DE and BC the
normal derivatives of the function U(x,y) be equal to zero.

|
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2 ' ' NACA T™ 1319
_ It is assumed that in the region OABC the function U(x,y)
assumes the value Uj(x,y) and in the region ODEG.the value Up(x,y).
It is ideal to obtain the function U;(x,y) in the form
Ui (%) = %(xy) + &5 (xy) (1 =1,2) (1.2)

vhere the functions &;(x,y) (i = 1,2) exists only in the region OAFG,
!l(x,y) exists in the region OABC, and ¥, exists in the region ODEG.

For the auxiliary functions ¥;(x,y) and %,(x,y), the following
equations are obtained:

vy = -2 v =0 (i=1,2) (1.3)

The following conditions must be satisfied:

J¥

¥,(x,0) = (Bx—l)m = ¥1(0,y) + . (0,y) =0  ¥(x,47) = Uy (1.4)
1o} 4

¥5(0,y) = (§’§>y=b = ¥5(x,0) + 25(x,0) =0 ¥o(do,y) = Uy (1.5)

The boundary conditions for the determinstion of the functions
¥ (x,y) and ¥,(x,y) are nonhomogeneous; however, following

G. A. Grinberg (reference 4), set

.k . kxx
¥, (x,y) = § fe(x) sin g ¥5(x,) =§ vily) sin g

k=1 k=1
(1.8)

For &,(x,y) and ®p(x,y) the following conditions are then

obtained:

ob ~
q)l(dz:Y) = ‘i’l(X,O) = (a_x—l)x=d2 =0

o >

. kmx v
E Vi (d7) 51n.EE— -Up .¥;~Uo

k=1 -

(1.7)
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'@(d)_@(o)_fg "Oﬁ
2V 01l = F2At Y =\ gy y=d1 .. L.

| - (1.8)

x©

§ : . kwy
p—

k=1

y
i

!
i
P
5

It is ideal to obtain the functions &(x,y) and &5(x,y) in the
form .

.. kwy . . kﬂx‘
% (x,7) = § Y E w(y) sin 25

k.=l k:l
(1.9)

Equations (1.3) to (1.9) completely determine the function U(x,y)
in the region ODEFBC.

2. Solution of the equations of the problem. - Making use of equa-~
tions (1.3) to (1.9), the following equations are obtained:

2
knx Kx k 2Up k| 491
fi.(x) = A, sh == + B, ch=—= - (-1) —-+[1-(-1)]
S k50 ay k ™74y kit (k)3
(2.1)
)
2
2U, 4a
k kny k 0 k 2
v =M sh2 4+ N ch X o (-1 ———+|:1--1]——
(2.2)

I}

' 2U _
knx kax k¥ °Y0 knx
Py (x) Dksh-———+Ckch—l—+(—l) T(l-—ch——)+

(2.3)
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: . 2U, . .
e (y) = T on Sy pyon B, (g 20 (1 - en kLY) N
2

d.z kit dz
k2 ' fp(dz) dz kry pry
(-l) - > 5 E_ P sh d——' - k sin a——
’f (pdo/d; )% + k 1 2 1
p=1
(2.4)

Then fp(dz) and v?(di) have the values

2
f,(ds) = sh + ch - (-1)P — + [ - (-1)%}
D Ap T Bp 3 ® " om3
(2.5)
pndy pndy 2Ug 4d,
vy(d;) = M, sh + N, ch - (-1)P — + [:1 - (-1)?
pyvil My do D o P (Pﬂ)s
3. Determination of the. constants of integration. - For the func-

tions fy(x), v (¥), 0x(x), and w,(y), the boundary conditions from
equations (1.4), (1.5), (1.7), and (1.8) have the form

@k'(dz) Y

0 oy (dp)

I
Il

£1.(0) + ©3.(0)

fk'(a)
(k=1,2, . . .)
0

0 wk(dl)

Il

v (0) + W (0)

I

vi' (P) W' (d)

(3.1)

With the aid of these conditions the equations for the determina-
tion of the constants of integration are obtained from equations (2.1)
to (2.4).

With the elimination of Ay, Mg, Dy, Cy, Iy, and Fy from the

obtained equations, a set of two infinite systems of linear equations
(reference 5) is obtained. The following notations are introduced:

(-1)k . kndo (-l)k kndq
k

Bk = Sydids h i Ny = Rgdjdp ~—-— sh el (3.2)

This set of two infinite systems of equations is then feduced to
the form
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C By = E Rpakp + By Rk = E SPCIQ + Ty
. p=1 -

(k=1,2, . . .)

(.3.3)"

p=1
where
a _ .z_k dldz h PJ‘[d.l h prb ch pﬂ(b-dl)
kp T x a12p2 + dp2kP do d do
B - 3 _]-_ ZUO N i 1 - (-1 k EJ; c_s.Ch kﬁdz -& _ Zdl h kﬂdz
L P PR k dg 4 T .2 kndy  2dp
(3.4)
2k d1dp prdp  ppa  P(a-dp)
Ckp = — sh c h
Lk 20, 4 1- (-)kd kg (1 _Bp kﬂdl)
(3.5)

Systems (3.3) may be written in the form

a0

A:ZAVPZP+B, (v=1,2, . .

p=1

vhere it is necessary to set

Zop-1 = =Rx  Agn,em =0

Bon-1 = n=Y¢ fan-1,2p-1=0

A few cases will be considered.

1. The
a>dj] since from equations (3.4), (3.5), and (3.7)

Agn-1 ,2m <

.) (3.8)

A2n,2m-1 = Ckp

(3.7)
8xp

ini‘ini_te system (3.6) is completely regular for b2d, and
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A = c < .15 32_ 1
p=1 . p=1

p=1
1 (cth kndy  dp ) 1
(3.8)
Lo od (-] d
kY1 1
A - = 8; £ = =
_S_ én-1,p E kp = n dg (pd1/d5)2 + K2
p=1 p=1 p=1
_;(thk"dz dl)<;
2 dy kndo 2
where the inequalities were used
sh sch ch = sh exp | - <= (3.9)
do ds do ds do 2
prd pr(a-d,) prd prd .
sh ) z sch gﬂa ch 3 LI sh 3 2 exp | - —3 z < % (3.10)
1 1 1 1 1
1
cth x - £ s1 (0 xg =) (3.11)
Hence, for any v
1
Avp S 3 (3.12)

p=1

2. The system (3.6) is regular for the particular cases where
a>ds, b =dy and a = dp, b>dy (where a rectangular hollow section

is present).
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o In this case -

} E AZn,p
!

1

|

I

p=1

.E Chgn.1,p = E Byp <
p=1 p=1 .

1

2 %2
e di

p=1

= g ck_p<

p=1

2k 91

pdo/d )% + ¥2°
(pdo/dq)

<1 (3.13)

£k

where the inequalities (3.11) were used

P J'fdz

E : 1
<1 (3.14
(pd1/dg)? + 12 )
p=1

b-d
pa(b-d;) _ 1

pr(a-ds)
h <

prd pxrd
sh 3 L sch 3 1 ch 3 sh 3 gna ) 1
2 2 2 1 1 1
(3.15)
According to equations (3.13) and (3.14) for any Vv
E Avp <1 (3.18)

3. When a

p=1

b and dp = d = d, a hollow square section (fig. 2),

a single infinite system of linear equations which is entirely regular

for afd Z2p >1,
the systems (3.3).

where

- R -bkp

where p
This results in

= E Fpbyp + o (k=1,2, . . .)
p=1

_ 2k pra pr(a-d) 1

=5 sh prn sch 3 ch )

p? + K%

is a finite number, is obtained in place of

(3.17)

(3.18)
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20, . vk +1
-1 Y ¢ 1+ (-1) .2 2 4y En
% =k \Tm)2 * o sh kn 2 ( T kx B3 ) (3.19)
= 2n(u-1) | zn(u-1)
2k 1 + e~amib- 1 1 + e”cT\B-
b < — < (3.20)
§ kp " "=n 2 E P2 + k2 2
p=1 p=1 .

where the inequalities (3.11) were used and

+ e~2n(p-1)
2

e . pn(g-d) <1

3 (3.21)

sh px sch P

As an example, the case where a/d Z U= 3/2 is considered. From
(3.20) is obtained

5 by, <1 - 6 = 0.5216
p=1
6 = 0.4784 (3.22)

The free term oy of the system (3.17) satisfies the inequality

U .
jod < 0.20264-52 - 0.06198 (3.23)

The values of the unknown F), with an excess 1ls denoted by Fk+
and the values with a defect by Fy~.

Using the theory of regular and completely regular systems (refer-
ence 5) and applying limiting values yields the following estimates for
ot

k

Un~ u~t .
F,~ = 0.27547 2 . 0.09629 < F, £ 0.27588 2 . 0.09641 = F, 7t
1 dz _ < Tl dz 1
Uy~ . Up*
F.” = 0.18234 —— - 0.11107 < F, < 0.18300 —— - 0.11128 = F,*
2 32 2 a2 2
(3.24)
Un~ Unt
- 0 0 +
F = 0.14762 — - 0.09749 < Fz < 0.14845 —/— ~ 0.09775 = F .
3 dz 3 dz 3
Uy Ub+
0.13440 —— - 0.09196 € F,"< F_ & F +s 0.13739 —— - 0.09288
dz k k k 32

(k=4,5, . . .)



‘NACA TM 1319 : : 9

where UO+ is the value of Uy with an excess and Uy~ - is the value
_with a defect. |

4. Determination of the constant Ugs = For determining Ug, use

‘is made of the theorem on the circulation of the tangential stress in
torsion (reference 6)

Tds = 26T : o (4.1)

Co

;t vhere CO is the inmer contour FHMLF of the section (fig..l), Rg is

the area enclosed by this contour, G 1is the shear modulus, T is the
angle of torsion per unit length, and TS is the projection of the

tangential stress at any point of the contour C, on the direction of
the tangent to the contour.

Substituting in (4.1) the value

U dx oU dy
Ts-(?ya'&ds Ge (4.2)
and making a certain transformation, relation (4.1) is reduced to the

form
a
d .
(%)ymil e (%)}@dz dy = 2(a-dg)(b-d1)  (4.3)

Use of the obtained values of .fk(x) and vk(y) yields, from
relations (1.2), (1.6), and (4.3),

: | ' f1de 28b

: Uy = =— -zab - ady - bd, +

3 0 dp(a-dy) + d; (b-dq) 1 2

| .

3 a2 O ks (b-d )

[ R knd n(b- :

i bl —% sh-—EQL sch gﬂb ch 3 1. (2.4)
= T k 2 2 _ 2

|

3

k=1

(- -] aD
a,2 S kndo kr(a-d,) B + 71
—}— —% sh 3 2 sch gna ch 3 3 - dldz —liiE—Jg
T k 1 1, 1 -
k=1

k=1

e T e VR
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where Rk and Sy are the constants of integration determined from
the system (3.3); and B, and Y} have the values (3.4) and (3.5).
If the values of the coefficients Ry and Sk with excess and with

defect are substituted in (4.4) and this equation solved for Ug, the
values of Uy with excess and defect are obtained.

5. Determination of the stress function. - According to (1.2),
(1.8), (1.9),and the obtained values of the functions fy(x), vi(¥),
@x(x), and w(y), the stress function has the form:

= prd
_ . PRX 1 Dy
Uy (%,5) = E vp(dl) sin g= csch 5 sh 3 + y(d;-y) +

p=1

S,  kmd i
d;d, (-1)5 =% on —2 cen ¥22 on k“(g %) gin o,
1 1 1 1
k=1

Uy T (_qyk+l  kn(x-dop)
-0 (l) ch sinm+ for 0 x< a
k=1

2 & (-1)k on E1(x-d2) i kny vp(dy) p(-1)°

7 d d d 2 2
2 1 1 (pd;/a + k
k=1 =1 1/3z)

(5.1)

U1(x,y) = Up dl + y(dz-y) + for dps x< &
1

S knd
k ~k 2 kna kn(a-x . kny
d1d, g (-1) % sh—3— sch g— ch (d ) sin —<

1 1 1 4

k=1 (5.2)



NACA TM 1319 11

x
Us(x,y) = Uy T + x(dg-x) + for ;€ y<b
= R knd
k "k 1 kb kn(b-y) . knx
d,d, (-1)* & sh 3 sch 3, th 3, sing,
k=1 (5.3)

-]
; " . prdy
Un(x,y) = :E'P(dz) sin g;ry esch T sh g;fx + x(dp-x) +

p=1

R knd
d,a (-1)% ¥ an 1 gon Kb op kn(o-y) o5, knx

2 dp dg dg
k=1
2U k+1 kn(y-dq)
OE:(-l) y 4/ o kmx
o " ch 3, sin i + for 0 y <& d.l
k=1

- = £ -1)P
2 4z (1) on X)L e pldp) (-1)° p
dz
K=1

™ 43 dz (pdp/dq)? + k2
p=1
: (5.4)
where fP(dz) and v, (4;) have the values
2
_ _l)p+l 2Uq 4dl . [ )
f(ds) = ( + 1+ (-1) -
p\rad o o) 7 0253
prd © pnla-ds)
spd1dp sh —3 2 sch P2 on — 2
1 1 1

_ | T 55
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o+l [ 2u, 44,2 : .
(dl) - (-1) 0 + 223 [é + (_l)p+{] .
P T pex

prdy pr(b-d;)
Rydydy sh —— sch 22 cn =
kS da da

(5.8)

By the substitution of the obtained values of the stress funection
U(x,y) in the general formulas, the stress and stiffness in torsion are
obtained.

As an example the torsional stiffness and stress of a rod with a
hollow square section (fig. 2) will be determined.

6. Determination of the torsional stiffness. - The substitution
in equations (5.1) to (5.6) of b =a and dy = dy, = d and the use

of the formula for the stiffness of a section

= 8G [(a—d)z Uo +v£dk£d U(x,y) dxdy + zJO\d dy ja U(x,y) dx]

a (6.1)

yields, after integration,

U
= 8gal a-.11a2a_0,Lfa_3)4 (6.2)
d d g2 3\d
16 E ‘ i i krra 1 _. kx{a-d) kna
1 A [l - th i sh 3 sch d]+
k=1
4 L [l + sh kx sch ke sh kﬁ(a_d) -
jr3 kz a d

kna kn(a—d)] p(- l)P+l £ (d)
Zp+k dz-

(continued on the following page)
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3 - , ¢

il £ _ ) L [}h kn sch K78 gp kn(a-d) , gop kma g kn(a-d{] +
H 34z 3 ) ] ] 3

LA .

5‘£, k=l,3; o o o

Sty

Ly 2R TR

Bt

Het Ll . 1

k = Z e (6.2)
. 2 2 2 o
= 1 d P :

p=1l,3, . . .

where Uy is determined from the equation

oo o0
U, F o?
0O_a_,1 a k kna kx(a-d) a k
_— = 2 = —_— - —_
2 d T=a-d g w2 Sf K oseh Tgm ch =g a-d K
k=1 k=1 (6.3)
and fp(d) has the value .
_1YPa?2 _ U _yp+I
fp(d) = (-1)7d” F_ sh px sch 222 ch prfa-d) 2 70 4[1 + (1) ]
P P d d b1 dZ P2ﬂ3

(6.4

the unknown constants Fy being determined by inequalities (3.24) and
o3 having the value (3.19).

Substitution of the obtained values of the coefficients Fk+ and
Fp” in (6.2) yields the upper and lower limits of stiffness. The
coefficients with a defect Fy~ will correspond with the lower stiff-

ness limit C~ and the coefficients with an excess Fk+ will corre-
spond with the upper stiffness limit C*.
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TABLE I

L

a/d Co* cot Co~ A )
1.5 8.0 11.052 11.051 | 38.4 |{0.009
2.0 27.0 32,952 32.949 | 22.0 | .008
2.5 64.0 73.780 73.775 | 15.3 | .008
3.0 125.0 139.518 | 139.509 | 11.6 | .007
3.5 216.0 236.164 236.150 | 9.3 | .007
4.0 343.0 369.716 369.697 | 7.8 | .005
5.0 729.0 771.542 771.509 | 5.8 | .004
10.0 | 6859.0 | 7035.066 | 7034.902| 2.6 | .002
20.0 |59319.0 | 60034.051 | 60033.323 | 1.2 | .00L

In table 1 are given the relative values of the stiffness computed
by formula (6.2):

cot = c*/aat ¢y = c/cat
énd the maximum relative error

& = (¢t - ct)/c

-~

in percent for different ratios a/d.

For comparison there are also given'in table 1 the values of the
relative stiffness computed by the semi-empirical formuls of Bredt
(reference 3).

c* a 3
Co* = —_— = (2 _d-. - l) e (6.5)

and the different A = (Ct - C*)/c* in percent.

From table 1 it is seen that the semi-empirical formula of Bredt
(6.5) gives sufficiently close results only for thin-walled rods for
vhich a/d > 5. For thick-walled rods, however, for which a/d< 5
the Bredt formula is not applicable; for a/d =4 it gives an error
of 8 percent which rapidly increases.

. 7. Determination of the stresses. - With the use of expressions
(5.1) to (5.2) for the stress function, the stresses are readily
obtained by the usual formulas of the theory of elasticity.

Leaving out the computations gives the following expressions for
the stresses at the points (a,0) and (a,d) for the rod with a hol-
low square section represented in figure 2:



NACA TM 1319 ' _ 15

U = |
X, (a,0) = ';cz) + 14w E (-1)* 7 sch 528 ohoknp Ged (7.1)
k=1
X(a.d)—-U—o—l+.rt Fy sch X% gp x a (7
z(8,4) ={ = x Sch =3- sh knp Gm .2)
k=1 _
Y,(a,0) = Y (a,d) =0 (7.3)

After the substitution of the coefficients Ekf and F)~, the
upper and lower limits of the stresses X, (a,0) and X,(a,d), where
the upper stress limit XZ+ will correspond with the coefficlents with
an excess F" (k=1,2, . . .), are determined.

In table 2 are given the computed values of the stresses Xz(a,o)
and Xz(a,d). In the first column of each stress are given the values
with an excess and in the second column, with a defect.

TABLE 2 b

Xz(a,d) Xz(a,0) Xz *max
Gtd Gtd Gtd
0.3149 0.3143 2.0212 2.0212 2.0
0.7325 0.7322 2.6326 2.6324 2.25
1.2085 1.2082 3.1798 3.1797 2.6667
1.7050 1,7048 3.6974 3.6972 3.125
2.2068 2.2066 4.2048 4.,2046 3.6
2.7092 | 2.7089 4..7088 4,7085 4.0833
3.7131 3.7129 5.7131 5.7129 5.0625
8.7204 8.7201 (10.7204 |10.7201 | 10.0278
18.7236 | 18.7234 |20.7236 |20.7234 | 20.0131L

e

oUW H
[eNoNoNoN NeN NoN;]

n

In the same table the values of the maximum stresses X ¥,
computed by the formula of Bredt, are given for comparison.

(2a/d -1)2
* = .
Xz max 4(a§d -1y &4 (7.4)
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From table 2 it is seen that in the determination of the maximum
stresses, the approximate formula of Bredt may be applied only for very
thin-walled hollow rods. '

When a/d = 20, the Bredt formula (7.4) gives an error of
3.5 percent. '

With decrease in the ratio a/d this difference increases; for
a/d = 10 it is equal to 7 percent, for a/d =5 1t is equal to
13 percent, and for a/d = 3 1t is equal to 18 percent, etc.

I1. BENDING OF A PRISMATIC ROD OF HOLLOW RECTANGULAR SECTION

8. Statement of the problem. - The stress function F(x,y) in
bending, as is known, satisfies the equation

2, _ J°F dFF Py P
VE=Z ¥ 2 - T+ (v-y0) - 35 £1(y) (8.1)

within the region of the section and the condition

F
% = 2—11 %% - 2xxgy - f(y)] %—E (8.2)

on the contour of the section where P is the bending force applied to
the free end of the rod at the center of gravity of the section, v is
the Poisson coefficient, x5, yo are the coordinates of the center of

gravity of the section, I is the axiasl moment of inertia of the sec-
tion about the y axis; the arbitrary function f(y) is to be deter-
mined from the conditions at the contour.

On account of the symmetry (fig. 3) it is sufficient to find the
function F(x,y) only for the part ODEFBC of the section.

In order to extend the solution over the entire region of the
cross section, it is required, on the basis of the membrane analogy
(reference 7), that the function F(x,y) becomes zero on the vertical
axis of symmetry and the derivative OF/dx becomes zero along the
horizontal axis of symmetry.

By condition (8.2) on the section contour, the function F(x,y)
is determined with an accuracy up to a constant term. For the cross
section which is a doubly connected reglon, the number of constant
terms is equal to two; and for their determination use is made of the
theorem on the circulation of the tangential stresses in bending
(reference 6).
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It is assumed that in the region OABC the function F(x,y)
assumes the value F,(x,y) and in the region ODEG the value Fp(x,y).

It is ideal to obtain the function Fi(x,y) (i = 1,2) in the form
Fi(x;Y) = 1g;‘[_(x:y) + ‘I’j_(xyy) (i= 1:2) (8'3)

vhere the functions &;(x,y) (i =1,2). exist only in the region OAFG,

the functions Y;(x,y) exist in the region OABC, and Y¥o(x,y) in the
region ODEG.

For the auxiliary functions ¥ ;(x,y) and @i(x,y) (i = 1,2),
setting f(y) = O, the following equations are obtained:

2 2 . P
VY = K(y-b) V3 =0 (i=1,2) (K =37 Iv) (8.4)

where the following conditions must be satisfied:

¥, (x,0) =(—:i—l)x=a =¥, (0,y) +&1(0,y) =0 V¥;(x,d7) =Cy
(8.5)
¥o(x,b) = ¥5(0,y) = ¥p(x,0) + &5(x,0) =0
(8.6)

. P
Yz(dz,y) = >3 (za‘dg)(b‘Y)dz
By the method described in the first section set

) . K . knx
¥ (x,y) = § fi(x) sin g ¥p(07) = § vi(y) sin 2

k=1 k=1 (8.7)

Then

¢, (a )_a@l = & (x,0) = 0, ¥;(x,d4;) = vi.(dy) sin 2 _ ¢
1g:Y_—Kx=d2 R A e k\EL do 1

. k=1"
 (8.8)

%z
*2(0d) - (‘asr—)y=d

= 2,(0,7) = 0
l .
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Qg(dz:Y).= zgi: i (dn) sin%j—;X - %% (Za-dz)(b-y)d2 (8.9)
| k=1 ‘

It is ideal to obtain the functions & (x,y) and &5(x,y) in the
form

.k .k
% (x,y) = > &y (x) s1ng’£—y o5(x,y) = E i (v) smd—:’—‘

k=1 k=1 (8.10)
Equations (8.4) to (8.10) determine F(x,y) in the region ODEFBC.

The constant C is determined with the aid of the theorem on the

circulation of the tangentlal stresses in bending for the inner contour
of the section:

] (BF1> oax + J (an) dy = O (8.11)
gyT- y=d. K X=d.2 v )

1
dp dy

9. Determination of the bending stresses. - The solution of the
equations of this problem is analogous to the solution of the equations
of the problem of the torsion of a rod.

With the omission of the computations the values of the obtained
stresses are:

for the region OAFG

P P 2y _ B §
Z(X}Y) = 2T (za' x)x + == 61 l + v (Sy -d'l ) - ZI (zy d'l)b +

Tt kna. kn(a-x) kny

- kBk sch ch cos +

dy ; , dp dq dy
k=1

(continued on following page)
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aC kn(x-d,)
. S (-1)% 20 o5 K
a. - cos +
41 d a
k=1
k -do ) b
2 k(-1)% sh m(x z) p(dl) p(-1)
%2 4 (pdl/dz)z + k&
k=1
=T kna krr(a-x) in X _
Y, (x,y) = a kB sch 3 - sh =g n g
k=1
7 % prdy
DV, (dl) cos P™™X esh =L gh P _
d‘z P d-z do do
o p=1
2 : g o En(xdp) gy vp(dy) p(-1)P
- k(-1)* ch I sin =+
2 1 1 (Pdl/dz + k
2c k:t(x do) -
l (-1 )k 2 sin %’—q (9.1).
1
k=1
for the region GFBC
C. p

-2 (2a- “1, B _ v a2 g2y
X, (x,y) = 5T (2a-x)x +d1+6Il+v (3y%-312)

o«
P v ks E kna ki (a-x) kxy
ST 1T ¥V (2y-d3)b + a kB, sch ) ch ) cos 3,

L 1
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X kna knla-x .k
Y, (x,y) = & E KBy sch 3, sh (dl ) sin dfy (9.2)

for the region AFED

X, (x,y) = % (22-x)x - dlz Z{ka + (-]_)kf'_?; E (2a-d5) +
k=1

d
2P v k+1 kab kn(b-y) kax
_Il+V( )2(l+(l) ) cschdz ch 3 s:Lnd2 -
P
(2a~dp)x - Ty :_ . (do-x)x

Y, (x,y) = - E%Z {ka + (-1)k d_erE Ij_l_; (2a~dy) +
k=1

do
2P v k1) kb kn(b-y) knx
T T+ (g )2(l+(l) csch g~ Sh T g T cos g -

In these relations the constants of integration B, and D are
determined from the infinite completely regular system of lineaxr
equations.

Translated by S. Reiss
National Advisory Committee
for Aeronautics
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